If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z^2-18=-11
We move all terms to the left:
z^2-18-(-11)=0
We add all the numbers together, and all the variables
z^2-7=0
a = 1; b = 0; c = -7;
Δ = b2-4ac
Δ = 02-4·1·(-7)
Δ = 28
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{28}=\sqrt{4*7}=\sqrt{4}*\sqrt{7}=2\sqrt{7}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{7}}{2*1}=\frac{0-2\sqrt{7}}{2} =-\frac{2\sqrt{7}}{2} =-\sqrt{7} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{7}}{2*1}=\frac{0+2\sqrt{7}}{2} =\frac{2\sqrt{7}}{2} =\sqrt{7} $
| 8k+5=6k+7 | | 7n^2-5n+8=0 | | x+73=93 | | 8y^2+6y+9=0 | | 6/7+s=16 | | x{3}+4=9 | | 6x8=50 | | 28-2x=6x+4 | | -98=-4.9x | | (X+60)(2x+50)(3x+10)=360 | | 3p-6+p+4=180 | | 9=7z-12 | | 8n=208n=208 | | 6.9s=82.8 | | 4(3x-7)^2=49 | | 4(2x-4)=5+3 | | n/6=5.9 | | 5x-3-8x=14+5x-1 | | (x+3.5)/2=1.5 | | 2x+16=18x-15 | | 4.2f=42 | | 4.8=b/2 | | 37=7m | | 14+4(x-8)=-8 | | -9k^2-2k-3=0 | | 14+4(x-8=-8 | | 4.1=a-3.4 | | 17x-4+17x-4=12x+16 | | -(h+-6)+-5=9 | | 4-6/r-7=2 | | t÷5/12=−3/10 | | 3(-3x-1)=27 |